3.12.28 \(\int \frac {1}{x^2 (a+b x^4)^{3/4}} \, dx\) [1128]

Optimal. Leaf size=19 \[ -\frac {\sqrt [4]{a+b x^4}}{a x} \]

[Out]

-(b*x^4+a)^(1/4)/a/x

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {270} \begin {gather*} -\frac {\sqrt [4]{a+b x^4}}{a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*x^4)^(3/4)),x]

[Out]

-((a + b*x^4)^(1/4)/(a*x))

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (a+b x^4\right )^{3/4}} \, dx &=-\frac {\sqrt [4]{a+b x^4}}{a x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 19, normalized size = 1.00 \begin {gather*} -\frac {\sqrt [4]{a+b x^4}}{a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*x^4)^(3/4)),x]

[Out]

-((a + b*x^4)^(1/4)/(a*x))

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 18, normalized size = 0.95

method result size
gosper \(-\frac {\left (b \,x^{4}+a \right )^{\frac {1}{4}}}{a x}\) \(18\)
trager \(-\frac {\left (b \,x^{4}+a \right )^{\frac {1}{4}}}{a x}\) \(18\)
risch \(-\frac {\left (b \,x^{4}+a \right )^{\frac {1}{4}}}{a x}\) \(18\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(b*x^4+a)^(3/4),x,method=_RETURNVERBOSE)

[Out]

-(b*x^4+a)^(1/4)/a/x

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 17, normalized size = 0.89 \begin {gather*} -\frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{a x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(3/4),x, algorithm="maxima")

[Out]

-(b*x^4 + a)^(1/4)/(a*x)

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 17, normalized size = 0.89 \begin {gather*} -\frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{a x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(3/4),x, algorithm="fricas")

[Out]

-(b*x^4 + a)^(1/4)/(a*x)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 31 vs. \(2 (14) = 28\).
time = 0.35, size = 31, normalized size = 1.63 \begin {gather*} \frac {\sqrt [4]{b} \sqrt [4]{\frac {a}{b x^{4}} + 1} \Gamma \left (- \frac {1}{4}\right )}{4 a \Gamma \left (\frac {3}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(b*x**4+a)**(3/4),x)

[Out]

b**(1/4)*(a/(b*x**4) + 1)**(1/4)*gamma(-1/4)/(4*a*gamma(3/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(3/4),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(3/4)*x^2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.10, size = 17, normalized size = 0.89 \begin {gather*} -\frac {{\left (b\,x^4+a\right )}^{1/4}}{a\,x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*x^4)^(3/4)),x)

[Out]

-(a + b*x^4)^(1/4)/(a*x)

________________________________________________________________________________________